第四百一十四章 语音会议(2 / 3)
那个叫程诺的年轻人,即便是我,也是佩服不已啊。如果有可能的话,我还真想去求教他一番。”
程诺在耳机里听到伯恩这波对程诺的吹捧,也不由有些脸红。
我现在……有那么厉害吗?
好在伯恩教授也很快结束了这番无意义的吹捧,继续神色庄重地说道,“我们本课题的目的,就是在结合程诺定理的基础上,推导出实用于代数簇的同调定理,进而通过同调性定理……”
伯恩教授讲话方式似乎很像华国式领导,明明就是三言两语,言简意赅的东西,被伯恩教授添添加加的说了接近小半个小时。
幸好这是语音会议,程诺还能走走神。至于现在就在伯恩教授面前的米勒和哈奇,恐怕很难受吧。
“我先说这些。接下来,我们各抒己见,先把这个课题的整体框架搭起来吧。”伯恩教授终于结束了他的絮絮叨叨。
气氛再次陷入沉默。
米勒教授打破这种尴尬的气氛,“汤姆,要不你说几句吧?”
“啊,我?”程诺愣了一下,他刚才以为是米勒要先说呢?搞半天是想让他说。
他脑海中理了理思路,“那我就说一下我的观点吧。”
“我们都知道,同调是拓扑空间范畴上的一个正变函子,也就是说他不改变箭头的方向。同时满足包括excision lemma在内的一系列公理。在一个链复形上拥有降次运算,比如说边界运算:dn:Cn→Cn-1。进行两次的边界运算后,便会得到0:dn-1*dn:Cn→Cn-2=0.”
“……设X是Fq上的d维光滑射影簇,约定E=X-Fq,在射影簇X上,我们可以定义Fx,F^2x,F^3x……射影簇X上Fq^n点集X(Fq^n)恰好是自同态F^nx:X→χ的不动点集!”
“那怎么计算射影簇上的不动点集的数量呢?”程诺还未说完,米勒教授就忍不住问道。
程诺笑了笑,缓缓开口说道:“Lefschetz不动点定理!”
米勒:“Lefschetz不动点定理?”
程诺加重语气,“对,就是Lefschetz不动点定理!”
“设X是一个紧微分实流形,f:X→X是一个微分映射,f的一个不动点是指一个点xin X使得f(x)=x.对于X的一个不动点x,微分df_{x}是切空间
本章未完,点击下一页继续阅读